« January 2017 | Main | September 2017 »

2 posts from June 2017

June 28, 2017

Poor data quality gives search a bad rap

If you’re involved in managing the enterprise search instance at your company, there’s a good chance that you’ve experienced at least some users complain about the poor results they see. 

The common lament search teams hear is “Why didn’t we use Google?” when in fact, sites that implemented the GSA but don’t utilize the Google logo and look, we’ve seen the same complaints.

We're often asked to come in and recommend a solution. Sometimes the problem is simply using the wrong search platform: not every platform handles every user case and requirement equally well. Occasionally, the problem is a poorly or misconfigured search, or simply an instance that hasn’t been managed properly. Even the renowned Google public search engine doesn’t happen by itself, but even that is a poor example: in recent years, the Google search has become less of a search platform and more of a big data analytics engine.

Over the years, we’ve been helping clients select, implement, and manage Intranet search. In my opinion, the problem with search is elsewhere: Poor data quality. 

Enterprise data isn’t created with search in mind. There is little incentive for content authors to attach quality metadata in the properties fields of Adobe PDF Maker, Microsoft Office, and other document publishing tools. To make matters worse, there may be several versions of a given document as it goes through creation, editing, reviews, and updates. And often the early drafts, as well as the final version, are in the same directory or file share. Very rarely does a public facing web site content have such issues.

Sometimes content management systems make it easy to implement what is really ‘search engine optimization’ or SEO; but it seems all too often that the optimization is left to the enterprise search platform to work out.

We have an updated two-part series on data quality and search, starting here. We hope you find it helpful; let us know if you have any questions!

June 22, 2017

First Impressions on the new Forrester Wave

The new Forrester Wave™: Cognitive Search And Knowledge Discovery Solutions is out, and once again I think Forrester, along with Gartner and others, miss the mark on the real enterprise search market. 

In the belief that sharing my quick first impression will at least start a conversation going until I can write up a more complete analysis, I am going to share these first thoughts.

First, I am not wild about the new buzzterms 'cognitive search' and "insight engines". Yes, enterprise search can be intelligent, but it's not cognitive. which Webster defines as "of, relating to, or involving conscious mental activities (such as thinking, understanding, learning, and remembering)". HAL 9000 was cognitive software; "Did you mean" and "You might also like" are not cognition.  And enterprise search has always provided insights into content, so why the new 'insight engines'? 

Moving on, I agree with Forrester that Attivio, Coveo and Sinequa are among the leaders. Honestly, I wish Coveo was fully multi-platform, but they do have an outstanding cloud offering that in my mind addresses much of the issue.

However, unlike Forrester, I believe Lucidworks Fusion belongs right up there with the leaders. Fusion starts with a strong open source Solr-based core; an integrated administrative UI; a great search UI builder (with the recent acquisition of Twigkit); and multiple-platform support. (Yep, I worked there a few years ago, but well before the current product was created).

I count IDOL in with the 'Old Guard' along with Endeca, Vivisimo (‘Watson’) and perhaps others - former leaders still available, but offered by non-search companies, or removed from traditional enterprise search (Watson). And it will be interesting to see if Idol and its new parent, Microfocus, survive the recent shotgun wedding. 

Tier 2, great search but not quite “full” enterprise search, includes Elastic (which I believe is in the enviable position as *the* platform for IoT), Mark Logic, and perhaps one or two more.

And there are several newer or perhaps less-well known search offerings like Algolia, Funnelback, Swiftype, Yippy and more. Don’t hold their size and/or youth against them; they’re quite good products.

No, I’d say the Forrester report is limited, and honestly a bit out of touch with the real enterprise search market. I know, I know; How do I really feel? Stay tuned, I've got more to say coming soon. What do you think? Leave a comment below!